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Abstract

Two versions of a general method for approximating standard error of regression effect estimates
within an IRT-based latent regression model are compared. The general method is based on
Binder’s (1983) approach, accounting for complex samples and finite populations by Taylor series
linearization. In contrast, the current National Assessment of Educational Progress procedure
assumes a simple random sample for standard error of regression effects and applies a jackknife
estimator to statistics of interest as a way to account for NAEP’s complex sample. In this study,
the versions of the general method are formally defined and the general method is extended to
multiple dimensions. Furthermore, they are applied in an empirical study to the 2004 NAEP
long-term trend data comparing both large, nearly saturated, and small models. Subsequently,
the results are compared to the operational-based imputation method. Results show no impact
on the imputation-based results, limited impact on large models, and reasonable impact on small
models. While it is not readily apparent to what this differential impact can be attributed, several

explanations are discussed.

Key words: Variance estimation, latent regression, Taylor series approximation, information

matrix, cluster sampling, National Assessment of Educational Progress



1 Introduction
National Assessment of Educational Progress (NAEP) data are analyzed using a latent
regression model (Mislevy, 1984, 1985). In this model, various student characteristic variables are

regressed onto a latent ability:
Oir = vii + € (1)

where 0 is proficiency for student ¢ on subscale t. Furthermore, the regression coefficients for scale
t are represented as 7 and x; is a vector of student characteristic variables. Finally, ¢; is a residual
term, assumed to be normal distributed. Latent abilities can be inferred from student responses to
items using a set of item response models (e.g., Lord & Novick, 1968) with a priori estimated item
parameter values. Specifically, a three-parameter logistic (3PL) model is used for multiple-choice
items and a generalized partial credit (GPC) model for constructed-response items. Under
these constraints, a closed form solution does not exist and an expectation-maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977) is employed to conduct the parameter estimation.

The sampling design of the NAEP assessment follows a multistage stratified scheme. In the
first stage, strata are selected, which in most samples are states or regions by metropolitan area
status. Each stratum contains a large number of primary sampling units, which are (groups of)
counties. Commensurate to size, primary sampling units are drawn and within those units—again
commensurate to size—schools are drawn. The final stage contains a simple random sample of
students within each drawn school. For some samples, schools are the primary sampling units and
one less stage is conducted. Because students within schools are exposed to similar instructional
practices and learning experiences and often share demographic characteristics, intraschool
correlations are expected to be substantial.

In NAEP, standard error estimates associated with the parameters of this model are less
than straightforward to obtain. Despite the sampling design described in the previous paragraph,
when approximating standard error of regression effects, the current methodology assumes for
estimation purposes that examinees have been selected from a simple random sample and uses the
fact that the posterior variance of the regression effects and the variance of regression parameter
estimates are essentially equivalent. The posterior variance of the regression effects is further
estimated by the sum of the following two parts: (a) the sampling variance, and (b) a component

of variation that reflects the uncertainty due to the fact that the examinee ability values have



not been observed directly (Mazzeo, Donoghue, Li, & Johnson, 2006). The resulting standard
error and previously obtained point estimates are then used to define a posterior distribution,
and imputations for the ability are drawn from this posterior distribution (Mislevy, 1991). More
specifically, the imputations are draws from the distribution of the latent ability given all of the
model parameters, student characteristics, and item responses.

Finally, NAEP utilizes imputed examinee ability values and the jackknife method to compute
the standard errors of the major reporting statistics (e.g., subpopulation means and percentage
above a certain level of performance) taking the complex sample into account. For more detailed
descriptions on these procedures, interested readers are referred to the NAEP technical reports
(e.g., Allen, Donoghue, & Schoeps, 2001). While in theory the standard error estimates do not
directly affect the estimates for NAEP major reporting statistics, there are some concerns raised
related to to the simple random sample assumption for the imputation model.

This paper explores some approaches to account for the complex sample in the standard
errors of the regression parameters. Possibly, regression effects can be reported in addition to the

aggregates derived from the imputation model.

1.1 Current Methodology

With NAEP, students answer a small portion of the cognitive tasks to limit testing time.
Hence, individual estimates are relatively imprecise. However, NAEP collects student and school
background variables and uses this information to interpret the expectation of student abilities. A
student record of background variables, denoted as x; for i = 1,--- , N, includes () observations,
where N is the total number of students in the assessment. That is, x; = (X1, -+, Xig)
Also, recall from (1) that the regression coefficients are represented by a @ dimensional vector
~ = (71,--+ ,7qQ)’- The vector of the marginal maximum likelihood estimates (MML) of the
regression effects is denoted as 4. The student ability values @ = (01, --- ,0y)’ can be inferred and
scaled through item responses Y = (y, -+ ,yy)’ via item response theory (e.g., Lord & Novick,
1968), where y, indicates the vector of item responses for student 7. Then, using a standard
breakdown into two components associated with sampling and measurement, the variance of the

regression effects estimates can be expressed as (Mazzeo et al., 2006):
Var(d) =~ Var(9X,Y)

= EVar(4X,Y,0)]+ Var[E(¥|X,Y,0)] (2)



The first part of the posterior variance for the regression effects can be estimated by the
variance of the regression estimates as if the examinees were selected from a simple random sample
and the examinee ability values were observed. Mazzeo et al. (2006) attributed this portion of

variation to the uncertainty in sampling. For the univariate case, denoting the residual covariance

as 02, the first component is evaluated by (X'X)"'o? or (Zf\;l wia:ia:’i) o? or X'DX_1027
where w; indicates the sampling weights and D is a diagonal matrix with the individual sampling
weights on the diagonal.

As student abilities are not observed, the second portion for the posterior variance of the
regression effects reflects the estimation of the variance due to the latency of 8. For the univariate
case, the expectation of E(v|X,Y,0) = (X’DX) ' X’D6. Thus the second portion of the

standard error depends on the posterior variance of 6, that is,
Var(E(v|X,Y,0)) = (X'DX) 'X'DVar(6|X,Y)DX(X'DX)" " (3)

To evaluate this quantity, the examinee’s posterior distribution of @ is assumed to be normal.

Mazzeo et al. (2006) summarized this approximate method as follows:

The more items each examinee receives the more valid this approximation becomes;
the posterior distribution of # has been shown to be normal as the number of items goes
to infinity (Chang 1996, Chang & Stout, 1993). In fact, as the number of items be-
comes very large, this second term begins to vanish, because the (asymptotic) posterior

variance of 6 goes to zero.’

It should be noted that this relationship has been proven under the assumption of independently
and identically distributed (i.i.d.) only.
In summary, the standard errors of the regression effects in the univariate case are

approximated by
Var(d) =~ Var(y|X,Y)
= E[Var(v|X,Y,0)] + Var[E(v|X,Y,0)]
= (X'DX) '¢*+(X'DX) ' X'DVar(8|X,Y)DX(X'DX)"". (4)

For the p-variate case, the student ability vector 8; = (6;1,--- ,0;p) fori=1,--- N is assumed

to have a common residual variance matrix 3. The variation due to sampling is Cov(¥,,4;),



which can be expressed as

CO,U(’?S? ﬁ/t) = E(’A)Is - 75)(;715 - ’Yt),? (5)
for s,t =1,---,p. If the ability values were observed,
CO’U("?S,’?t) = USt(X/X)_lv (6)

where o is an element of the covariance matrix 3, which is

011 012 013 -+ Olp

021 0322 023 -+ 09
> =

Opl Op2 Op3 -+ Opp

For example, the variance of the estimates for the regression effects due to sampling for subscale ¢
can be estimated as var(9;) =ou (X’ X)~!. Hence, the standard error for the regression effects is

the square root of the diagonal elements of the matrix oy (X' X))~ for t =1,--- ,p.

1.2 Alternative Approaches

In NAEP and similar large-scale educational assessments, the abilities of examinees from
the same sampling units (e.g., schools) are almost certainly positively correlated. Hence, a
consequence of ignoring the complex sampling design is that the magnitude of the standard errors
of 4 will be underestimated. It has been argued (e.g., Mazzeo et al., 2005) that the effect of
ignoring the sampling design to calcuate the standard error of the regression effects is likely to
be small relative to the size of the standard error of the target statistics (e.g., subgroup means
and percentages above achievement levels). For target statistics, the sampling design is accounted
for by a leave-out-group jackknife method and therefore the underestimation only pertains to the
variation due to the latency of the construct of interest. This usually accounts for approximately
5% to 10% of the variability. However, it is important to examine how severe the underestimation
is and to what extent a different approach would facilitate the reporting of regression effects and
their standard errors in addition to NAEP target statistics.

Several alternatives for the estimation of the standard error of regression parameters have
been suggested. A comprehensive discussion in relation to NAEP is provided by von Davier,

Sinharay, Oranje, and Beaton (2007). Their work is concentrated on White’s (1980) robust



method, Taylor series linearization (also referred to as Rao’s delta method), and a method based
on importance sampling using a Monte Carlo EM (MCEM) algorithm to estimate parameters.
Taylor series linearization, following Binder’s (1983) method, will be discussed below as it is
seemingly the only one of the three approaches that takes the complex sample design into
account. A computationally intensive approach based on the jackknife or alternative replication
type methods (e.g., bootstrap, balanced repeated replications; see Kovar, 1985; Wolter, 1985) is
conceivable as well. In that case, the estimation of the model parameters is carried out many

times. This approach is left for future work.

1.3 Binder’s (1983) Method

Binder’s method has been advocated by Cohen and Jiang (2002) in order to use the regression
effects directly for reporting while obtaining appropriate standard errors that take the complex
sample into account. This is a deviation from the current methodology where draws from an
imputation model form the basis of the report and statistical inference. Additionally, the method
can be used to improve the variability under the imputation model and therefore the estimation
of the variability due to measurement.

Specifically, Binder’s method could provide a consistent variance estimate using a between-
cluster estimator in combination with a Taylor series linearization approach. To approximate the
variance of the marginal maximum likelihood (MML) 4 in the univariate case, Binder suggested
using a first-order Taylor series expansion of a (Q-dimensional function W (%) around the true

unknown parameter
WE) = WH)+H)E —7) (7)
W (7) in (7) is the partial derivative of the log-likelihood function with respect to =,
N
W(y) =) wg,(v), (8)
i=1

with g;(v) = (g1 (), (9:5(7)s -+, gi(7y)) and
_ OZOQLi("}’,O'g)

(~) = ALE 9
) = F5 )
Because 4 is the vector of MML estimates, W (%) = 0. H(v) in (7) is a Hessian matrix and
defined as the partial derivative of W (~) with respect to v (i.e., H(vy) = 8‘217,57)). H(~v) is a



Q x @ matrix of partial derivatives with elements [BW’“E'Y)} or [Zi\; 1 %W of Wj(~y) with

respect to vy for j,k=1,---,Q. Thus,

Y- ~ —H(y)'W(v)

Var(§) = H(vy) 'Var(W(y)H(y) ™" (10)

Binder (1983) suggested approximating the matrix H () by evaluating the Hessian matrix H ()
at MML estimates of 4. Clearly, the essential elements for the variance estimation are the gradient
function g;(7), for i = 1,--- | N, the Hessian matrix H (), and the variance matrix Var(W(~)).
In the univariate case, the analytic expression for W (), the partial derivative of the log likelihood

function with respect to v, can be written as

N xi0; — xi2' iy
=1

Obviously, from (8), it follows that

aziéi—mi:n;'y
9,(v) = ————, (12)

o2
where 6; indicates the posterior mean of the ability for student i. Therefore, the Hessian matrix
can be obtained through the second order derivative of the log likelihood function with respect to
~, or the first-order derivative of W («y) with respect to 4. That is, in the univariate case (see also

the appendix)

oW (v)
oy

N
1 N
H(v) = =—— > wiziai(67 + o). (13)
=1

Cohen and Jiang (2002) claimed that the Hessian matrix H () can be approximated by
N
H(v)~ > wigi(v)g;(7), (14)
i=1

and the variance of W () [denoted as ©(7)] is the variance of W (y) across observations. In
addition, Cohen and Jiang used the stratified, between-primary sampling unit (PSU) weighted

estimator to obtain the estimate of €2(7) [denoted as ﬁ(ﬁ/)] That is,

H np
a5 = X (M) w9 @ - 90 (15)
h=1 =1



where g;; = > whik BlogfyLk)7 and g;, = i . gpi, In which h indexes the stratum, ¢ indexes

the primary sampling unit, k& indexes individuals, and mj; is the number of students in hth strata
and ¢th PSU unit.

From the discussion of Binder’s method (1983) above, it can be seen that the computation
for standard errors depends on the evaluation of two matrices: the Hessian matrix H () defined
in (13) and the variance matrix across PSUs Q() defined in (15). In the following section two
alternatives for implementation of Binder’s general approach will be discussed, where in the
second method an approximation to the Hessian matrix is used. Also, a method based on Fisher’s
information matrix will be used as benchmark representing a simple random sample approach in
addition to the current NAEP methodology described in section 1.1.

Method 1. For Method, 1 the Hessian matrix H () defined in (13) and €2(+) defined in (15)
are used. In practice, the variances of the regression effects Var(v) are estimated by substituting
H (~) in (13) and Q(7) in (15) into (10).

Method 2. For Method 2, the Hessian matrix, suggested by Cohen and Jiang (2002) and
defined in (14), and €2(7) are used in (15) to estimate the variances of the regression effects. The
difference between Methods 1 and 2 is the computation of the Hessian matrix. This matrix is
easier to compute than the matrix in (13). However, additional estimation errors are introduced
by this approximation.

Method 3. The matrix H () defined in (13) is related to the Fisher information matrix I(y)
(e.g., Lord & Novick, 1968, p. 418), which follows

I(v) = E(;ylogL(v,ﬁ))Q

2
- 5 (;’yzlogw,z))
— —E[H@H), (16)

where logL(7y, %) is the log likelihood function. Thus, the variance of regression effects estimates

can be evaluated by
Var(y) =I(v)"' = [-H)] ™. (17)

Method 3 directly uses the information matrix to compute estimates for Var(vy). One advantage

of Method 3 is that this method is relatively simple to implement and compute. Moreover, the



estimates of the standard errors are also MML estimates and this method provides a baseline for
comparison with the other methods in terms of assessing the underestimation of the variance.
However, it should be noted that Method 3 does not account for the variation due to cluster

sampling.

1.4 Summary

In summary, two potential methods that claim to take the complex sample characteristics
into account are defined to estimate the standard error of regression effects of the NAEP
latent regression model. There are two important applications of these methods. First, a more
accurate notion of the variability of regression effects could possibly be obtained, possibly for use
with reporting regression effects. Second, the multiple imputations model can be improved by
acknowledging the complex sample at all stages of the imputation process.

In the following section, Binder’s method will be extended to multiple dimensions. Following
that, an empirical study will be presented to compare these methods as well as their applications.
The current NAEP methodology is used for comparison. In addition, a method based on Fisher’s
information matrix is added, which is a computational simplification of the current NAEP

methodology.

2 Extending Binder’s (1983) Method to Multiple Dimensions
Mazzeo et al. (2006) suggested that an improvement to the current NAEP methodolgy would
be to generalize Binder’s (1983) method to multivariate models. Let v; = (i1, 712, .-, 71Q)’
be the vector of regression effects for the first subscale. Collect all these regression effects for
each subscale in a column v = (44, -,/ p)’ , then ~ is a pQ)-dimensional vector containing the

regression effects for all p subscales. Define g;;(v:) = aLéSZJ?Z), Wily,) = 3N, w;ig;;(7;) for

j=12---,Qandt=1,---,p. The analytic expression for the gradient vector can be written as

= 787

9;(v) =z, ® X7 (0; — v'm)). (18)

Subsequently, collect the gradients g;(7;) in a column for p subscales, that is,
9:(7v) = (gi(71),--- ,gi(7,)), as is defined in (18). From the previous section, note that W () is
a vector of the first-order partial derivatives of the likelihood function for p subscales with respect

to v, and W (y) = Zi\;l w;g;(v). Hence, the difference from the univariate case is that the



regression parameter vector < contains all p subscale regression parameters with dimension pQ.
The first-order Taylor expansion of the pQ-dimension function of W (%) around the true parameter

vector ~y is given by

WH) ~ W)+ H)EH—7) (19)

Because 4 maximizes the likelihood function, it also solves the likelihood equation system

W (%) = 0. From that it follows

- ~ —H(y)'W(v) (20)

Var(y) = H(v)"'Var(W)[H)™. (21)
H () is a Hessian matrix with dimension pQ x pQ of partial derivatives, that is, H(y) = ((hx;)),

for hy; = {ZZJL wi62al<;ig;(]7,z)] = 8”5257), for k,j =1,2,--- ,pQ. Simply put, H(vy) = 8‘27‘57) can

be expressed as a block matrix, where each diagonal block matrix is occupied by the Hessian
matrix for each subscale. Each block component matrix in H(v) has dimension @ x @. The

analytic expression for computing the diagonal block matrix in H(v) is given by
N
H(y)= - waio (37857 +37). (22)
i=1

From (22), it can be seen that the Hessian matrix H(7) is a block diagonal matrix and can be

expressed as

Hii(v) Hia(y) Hus(y) - Hip(y)
H(y) = Ho(v) Hoa(vy) Hoas(y) -+ Hap(y)
Hpi(v) Hpp(y) Hps(y) -+ Hpp(y)

The Hessian matrix H (7y) can be approximated by EZ]\; 1 wig;(77)g;(7), similar to the univariate
case.
The variance matrix in (10), Var[W ()] or Q(7), is the variance of W (-y) across observations.

By extending (15) to a multivariate setting, the estimates of () are obtained with dimension

pQ x pQ.



3 Empirical Results

An empirical study was conducted to compare the methods described in the previous section.
The study was limited to a univariate problem. Data was from the 2004 NAEP long-term trend
mathematics assessment, which contained almost 7,600 students at the age of 17 sampled from
the population of U.S. students. The cognitive part of the assessment had 162 items combining
multiple-choice and constructed-response answering formats. All constructed-responses were
dichotomously scored. Each student responded to approximately half of the item pool. A
large set of student characteristic variables was reduced by principal component analysis to
156 components, accounting for 90% of the total variance. Both this large saturated or nearly
saturated model as well as a smaller model including only student characteristics such as gender
and race/ethnicity were evaluated in this study. It should be noted that NAEP’s current approach
is to use the large principal-components-based model.

In addition to the proposed methods, the current NAEP methodology were added to the
comparison. Also, NAEP’s operational imputation methodology (Mislevy, 1991) of proficiency
was applied to all methods to make a comparison between estimates of student group effects based
on the regression coefficients and estimates of these effects based on imputations of ability. In
addition, it can be assessed what the impact of accounting for the complex sample with respect to

measurement error is on NAEP’s target statistics.

3.1 A Large Model With Principal Components

First, the estimates of the standard errors of NAEP’s current approach are compared with the
estimates from the proposed methods. In theory, Methods 1 and 2 would yield a larger estimate
of the standard errors than those from the the current NAEP approach, since these two methods
take the variation across clusters into account. The third method would yield similar estimates of
standard errors to those from the current NAEP approach, since both methods ignore the complex
sampling designs during the estimation process. This method is included predominantly for its
appeal with respect to computational simplicity of the Hessian matrix in (13) and the asymptotic
properties of MML estimates.

Table 1 lists the estimates of the standard errors for the regression parameters « from all
methods along with results from the current NAEP approach (denoted as NAEP SE). The first

column is the number of the conditioning variables or principal components from the latent
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regression model (the principal component factor scores, or PCFS). The second column presents
the estimates of the regression parameters for these 156 principal components. The third column
shows standard error estimates via the current NAEP procedure. The fourth through sixth
columns are standard error estimates using the three alternative methods. Note that only the first

15 and the last 5 regression parameters are listed for brevity.

Table 1
Standard Error Estimates for Regression Coefficients v
PCFS 0% NAEP S.E. Method 1 Method 2 Method 3

Intercept .0046 .009 .0125 .0155 .0083
2 -.0374 .001 .0011 .0014 .0009

3 .0049 .0013 .0016 .002 .0012

4 .0142 .0016 .0018 .0022 .0015
5 -.0171 .0018 .0021 .0025 .0017
6 —.0461 .0019 .0027 .0032 .0017

7 —-.0017 .0019 .0015 .002 .0018

8 —.0235 .0021 .0026 .0031 .0019

9 —.001 .0021 .0024 .003 .002
10 .0013 .0023 .0029 .0034 .0021
11 .0223 .0023 .0022 .0026 .0021
12 .009 .0023 .002 .0026 .0022
13 —-.0091 .0025 .0031 .0033 .0022
14 .0149 .0025 .0029 .0034 .0024
15 —.0071 .0027 .0024 .0029 .0025
153 .0002 .0101 .0097 0112 .0093
154 .0098 .0101 .0098 011 .0093
155 -.0184 .0101 0111 .0136 .0094
156 —.028 .0101 .0095 .0108 .0094
157 —.0155 .0102 .0114 .0122 .0094

Note. S.E. = standard error, PCFS = principal component factor scores.

From Table 1, it can be seen that the standard error estimates from Methods 1 and 2 are very
close to each other and also close to the results from the current NAEP operational approach.
Specifically, most of the estimates from Method 1 are slightly greater than those from the current
NAEP estimates. However, there are a few estimates that are smaller. Results from Method 2
are uniformly greater than the current NAEP approach. Results from Method 3 are generally

smaller than the current NAEP approach, which is also expected since this method assumes a
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simple random sample and does not account for the variation due to the latency, as is done under
the current NAEP approach.

The difference in magnitude between NAEP’s approach and Methods 1 and 2 is certaintly
surprising as the sample is generally believed to have a design effect between 2 and 3, based on
studies employing resampling methods (see Allen et al., 2001). A design effect is the ratio between
a complex sample variance estimate and a variance estimate using a simple random sample
estimator. A possible explanation can be that the saturated model contains a large number of
school variables and, therefore, in some sense a fixed effects hierarchical model is estimated. In
other words, the hierarchical structure with respect to the measurement model is largely accounted

for by the model. This will be further discussed below.

3.2 Direct Estimates of Subpopulation Characteristics With a Large Model
An important question is how these different estimators affect the standard error estimates
of student group abilities. The MML estimate of the mean proficiency vector for group G can be

obtained from the estimated regression parameters (Mazzeo et al., 2006) as:

~/

io = Tz, (23)

where Z¢ is the sample mean vector of the background variables from examinees in group G,

o Wik
Ep = EZ’:EG ; -, (24)
i€G
The variance of the group mean estimate is computed by
Var(fig) = &g Var(D)Zy. (25)
The empirical Bayesian estimate of the same quantity is given by
_ Wifl
g = —r (26)
g;; Dieq Wi’

where [i; is the mean for the posterior distribution for examinee ¢ evaluated at I' and 3. The
difference between (23) and (26) is that the first computation is the mean implied by the regression
model and the second is the mean with respect to the complete model. Hence, misspecification of

the regression model will yield some differences. These estimates are generally described as direct
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estimates in contrast to imputation based estimates. Hence, direct estimation of subgroup means
requires the estimates for regression effects 4 and the means of the student group variables. Tables
2 to 5 show the student group mean estimates for all methods, both untransformed (the third
column) and transformed (the fifth column) to the current NAEP reporting scales. Following (25),
the standard errors for the direct estimates of subgroup means depend on the covariance matrix
of regression effects estimates. The effect of the four different approaches on the standard error

estimates for these subgroup mean estimates will be described below.

Table 2
Direct Estimates for the Subgroup Means and Standard Errors—NAEP Before

Application of Jackknife

Group Means ~ S.E. untrans.  Scale  S.E. trans. L (95%) U (95%) Width
Male 0.0572 0.0127 306.8993 0.3932 306.1287 307.6700 1.5413
Female —0.0473 0.0127 303.6739 0.3904 302.9087 304.4392 1.5305
White 0.1936 0.0108 311.1059 0.3334 310.4524  311.7594 1.3069
Black - 0.6599 0.0251 284.7762 0.7757 283.2558 286.2966 3.0407

Hispanic  — 0.4453 0.0239 291.3955 0.7359 289.9533 292.8378 2.8845
A./PILA. 0.3296 0.0450 315.3021 1.3885 312.5807 318.0235 5.4428

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L. = lower, U = upper,

A./PI.A. = Asian/Pacific Island American.

Table 2 shows the direct estimates for gender and race student group means and the
corresponding standard errors following the latent regression coefficients standard errors before
application of the jackknife estimator. NAEP does not publish these estimates because the
complex sampling design is ignored. However, it is informative to assess the impact of using
complex sample variance estimators. Essentially, the same set of regression effects is used but with
different estimates for the variance of these regression effects. Surprisingly, the standard errors are
quite similar. Between Methods 1 and 2, the approximation used in the second method appears
to inflate that variance between 10% and 20% for this particular sample. Also, Method 3 seems

to underestimate the variance even when compared to the standard errors following the NAEP
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Table 3

Direct Estimates for the Subgroup Means and Standard Errors—Method 1

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%) Width
Male 0.0572 0.0133 306.8993 0.4096 306.0966 307.7020 1.6055
Female —0.0473 0.0154 303.6739 0.4751 302.7428 304.6051 1.8623
White 0.1936 0.0141 311.1059 0.4339 310.2554 311.9564 1.7010
Black —0.6599 0.0320 284.7762 0.9869 282.8418 286.7106 3.8688
Hispanic - 0.4453 0.0241 291.3955 0.7425 289.9402 292.8509 2.9107
A./PILA. 0.3296 0.0452 315.3021 1.3950 312.5679 318.0364 5.4684

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.ILA. = Asian/Pacific Island American.

Table 4
Direct Estimates for the Subgroup Means and Standard Errors—Method 2

Group Means S.E. untrans.  Scale  S.E. trans. L (95%) U (95%) Width
Male 0.0572 0.0143 306.8993 0.4415 306.0340 307.7647 1.7307
Female —0.0473 0.0211 303.6739 0.6501 302.3997 304.9481 2.5484
White 0.1936 0.0179 311.1059 0.5530 310.0221 312.1897 2.1677
Black - 0.6599 0.0388 284.7762 1.1977 282.4288 287.1236  4.6948
Hispanic - 0.4453 0.0296 291.3955 0.9146 289.6029 293.1882 3.5853
A./PILA. 0.3296 0.0505 315.3021 1.5592 312.2460 318.3582 6.1122

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,

S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.I.LA. = Asian/Pacific Island American.

formulas before the complex sample is accounted for. This could be due to the fact that Method 3
does not take the variability due to the latency of the construct into account as NAEP does.

In Table 6, the NAEP published results are presented, based on the multiple imputation
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Table 5

Direct Estimates for the Subgroup Means and Standard Errors—Method 3

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%) Width
Male 0.0572 0.0117 306.8993 0.3615 306.1908 307.6078 1.4170
Female —0.0473 0.0117 303.6739 0.3602 302.9679 304.3799 1.4120
White 0.1936 0.0100 311.1059 0.3081 310.5020 311.7098 1.2078
Black —0.6599 0.0230 284.7762 0.7103 283.3839 286.1684 2.7845
Hispanic - 0.4453 0.0218 291.3955 0.6720 290.0784 292.7126 2.6342
A./PILA. 0.3296 0.0410 315.3021 1.2639 312.8250 317.7793 4.9544

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.ILA. = Asian/Pacific Island American.

Table 6
NAEP Plausible Value-Based Estimates for the

Subgroup Means and Standard Errors

Subgroup Means trans S.E trans. L (95%) U (95%) Width
Male 307.04 0.894 305.288  308.792 3.504
Female 303.58 0.795 302.022  305.138  3.116
White 311.15 0.685 309.807  312.493 2.685
Black 284.23 1.397 281.492  286.968 5.476
Hispanic 291.84 1.208 289.472  294.208 4.735
A./PIA. 315.15 3.000 309.270  321.030 11.760

Note. Trans. = transformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales,

L = lower, U = upper, A./P.I.LA. = Asian/Pacific Island American.

methodology and with application of the jackknife variance estimator. In comparison, Methods

1 and 2 underestimate the variance for most groups except Hispanic students. This is surprising
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as all three approaches in theory are expected to yield similar results. This is a function of the
modest increase of standard errors of the regression effects in the (nearly) saturated model and will
be further explored in the discussion section of this report. Yet, it is clear that direct estimates
based on a (nearly) saturated model are inappropriate. There are also some small differences
between the mean estimates of some racial groups comparing the published results and the direct

estimates. This is expected as the multiple imputations methodology has a random element.

3.3 Multiple Imputation Based Estimates of Subpopulation Characteristics With a
Large Model

An interesting application of Binder’s method to NAEP could be to improve the standard
error estimates of the regression coefficients in order to more accurately depict the width of the
distribution used to draw multiple imputations. In Tables 7 to 10 plausible value-based results are
shown including jackknife based standard errors. It can be argued that Methods 1 and 2 already
take the complex sample into account in the regression variance estimates and, therefore, that the
multiple imputations should depict an appropriately wide distribution. However, the standard
errors of the regression effects only inform the imputation model with respect to the measurement
variance. If during the assessment each student is exposed to a reasonably large number of
items, then the shape of the item likelihood can be expected to be peaked and, subsequently, it
will dominate the model. The influence of the measurement variation will be rather limited as
far as the posterior moments are concerned. These moments are in turn used to draw multiple
imputations. Specifically, the regression parameter estimates 4 and the associated variance matrix
are used as parameters of a multivariate normal distribution and a set of regression parameters is
drawn from this distribution. Subsequently, posterior moments are computed and a set of multiple
imputations is generated from normal distributions with parameters equal to those moments.
These two steps are repeated for the number of desired imputations. In the current example,
students answered approximately half of the 162 questions, which can be considered a substantial
number of items.

Hence, results are reported on how standard errors estimates would affect NAEP student
group mean estimates and standard errors following the multiple imputations. Please note that
the imputation method is approximated for Methods 1 and 2 using univariate distributions

instead of multivariate normal distributions. One concern of the Binder method under this large
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Table 7
Plausible Value-Based Estimates for the Subgroup Means
and Standard Errors—NAEP Methodology

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%)  Width
Male 0.0728 0.0313077 308.039  0.965843  306.146  309.932 3.7861

Female —0.0357 0.0269593 304.514  0.831693  302.884 306.144 3.26024
White 0.2064 0.0255627 312.293  0.788608  310.748  313.839 3.09134
Black —0.6553 0.077085 284.611  2.37807 279.95 289.272 9.32204

Hispanic - 0.4195 0.058173 292.259  1.79464 288.741  295.776 7.03497
A./P.IA. 0.3533 0.114849 317.465  3.5431 310.52 324.409 13.889

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.ILA. = Asian/Pacific Island American.

Table 8
Plausible Value-Based Estimates for the Subgroup Means
and Standard Errors—Method 1

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%)  Width
Male 0.0728 0.0312491 308.141  0.964036  306.252  310.031  3.77902
Female - 0.0357 0.0279076 304.675  0.860948  302.988  306.363  3.37492
White 0.2064 0.0247893 312.413  0.764749  310.914 313.912  2.99782
Black —0.6553 0.0780948 284.549  2.40922 279.827  289.271  9.44416

Hispanic - 0.4195  0.060444 292.468  1.8647 288.813  296.123  7.30961
A./PILA. 0.3533 0.125613 317.952 3.87517 310.357  325.548  15.1907

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L. = lower,

U = upper, A./P.I.A. = Asian/Pacific Island American.
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Table 9
Plausible Value-Based Estimates for the Subgroup Means
and Standard Errors—Method 2

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%)  Width
Male 0.0728 0.0307026  308.17 0.947174 306.314  310.027  3.71292
Female —0.0357  0.0261356 304.518 0.806282  302.937  306.098  3.16063
White 0.2064 0.0247 312.308 0.761994 310.815 313.802  2.98702
Black - 0.6553  0.0796551 284.644 2.45736 279.827  289.46 9.63285
Hispanic - 0.4195  0.0618095  292.42 1.90682 288.683  296.157  7.47474
A./PILA. 0.3533  0.112409 317.85 3.46783 311.0563  324.647 13.5939

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,

S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.ILA. = Asian/Pacific Island American.

Table 10
Plausible Value-Based Estimates for the Subgroup Means
and Standard Errors—Method 3

Group Means  S.E. untrans.  Scale  S.E. trans. L (95%) U (95%)  Width
Male 0.0728 0.0321202 308.099 0.990909 306.157  310.041 3.88436
Female —0.0357  0.0276155  304.58 0.851937  302.91 306.25 3.33959
White 0.2604 0.0257705 312.357  0.79502 310.798  313.915  3.11648
Black —-0.6553  0.077136 284.516 2.37965 279.852  289.181 9.32821
Hispanic —0.4195  0.0641211 292.296 1.97814 288.419  296.173  7.75429
A./P.IA. 0.3533  0.115223 317.821 3.55463 310.854  324.788 13.9341

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.I.LA. = Asian/Pacific Island American.
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model and the relatively small sample size is whether the associated covariance matrices are
positive definite. However, since the off-diagonal elements carry near-zero values, the impact of
this approximation is expected to be minimal. The purpose of this comparison is to show how
the various estimates of the variance of regression effects affect NAEP student group means and
standard errors and how biased these estimates may be if the complex sampling design is ignored.
Table 7 lists the results using the current NAEP estimates of variance matrix for regression
parameters. The results should in theory be consistent with those in Table 6, except that the
imputation is slightly different. Hence, slight differences are observed in particular for the standard
error estimates of Black students. Since the imputation is similar for all four methods, the results
from Table 7 will provide the baseline for comparison. Method 1 in Table 8 appears quite similar
to the baseline, where smaller groups are somewhat overestimated. This effect is similar if not
larger in Method 2 in Table 9. The exception is Asian/Pacific Island American students, which
comprise a nonreportable group for NAEP following statistical standards for minimum cell sample
sizes. Method 3 generally provides somewhat larger standard errors except for the last group.
Note that the effect of using alternative variance estimators for regression effects only affects a

small part of the variance.

3.4 Subpopulation Estimates Based on Small Models

As far as the authors are aware, comparisons of direct estimates and multiple imputations
based on large regression models have not been published. However, several comparisons have
been made between direct estimates from a small model and multiple imputation based results
(e.g., Cohen & Jiang, 2002; von Davier, 2003). In addition, some concerns about the large model
have been voiced (e.g., Aitkin, 2003). Therefore, in this section three small models have been
estimated. The models are a gender-only, a race-only, and a combined gender and race model.
Dummy codes have been used to distinguish the variable categories and every model has an
intercept. For example, the gender model has an intercept and a dummy variable that is equal to
1 for the female category and 0 otherwise.

The MML estimates for the regression effects parameters for these three models are given in
the second column in Tables 11, 12, and 13, respectively. We expect that the residual variance
o2 will be larger than that in the large operational model. The residual variance estimates

corresponding to the these three small models are .978, .8674, and .8653, which are all larger than

19



Table 11
Standard Error Estimates for Regression Coefficients v

on a Small Model With Gender-Only

PCFS o NAEP/SRS S.E. Method 1 Method 2 Method 3
Intercept  0.0750 0.0166 0.0358 0.0368 0.0157
Female  —0.1104 0.0234 0.0224 0.0262 0.0222

Note. o? = .978. SRS S.E. = simple random sample standard error,

PCFS = principal component factor scores.

Table 12
Standard Error Estimates for Regression Coefficients

on a Small Model With Race/Ethnicity-Only

PCFS ¥ NAEP/SRS S.E. Method 1 Method 2 Method 3
Intercept 0.2080 0.0131 0.0318 0.0352 0.0124
Black - 0.8680 0.0343 0.0514 0.0615 0.0322
Hispanic  — 0.6300 0.0328 0.0454 0.0503 0.0308
A./PIA. 0.0690 0.0593 0.0801 0.0812 0.0553

Note. 02 = .8674. SRS S.E. = simple random sample standard error, PCFS =

principal component factor scores, A./P.I.A. = Asian/Pacific Island American.

the residual variance estimates for NAEP operational models of .5673.

The standard error of the regression effects estimates are given in column 3 through column 6
in Tables 11, 12, and 13. Column 3 gives the standard error for the regression parameter estimates
if (4) was used and column 4 through 6 provide the standard errors for the regression parameters
estimates following Methods 1 through 3. The results follow a similar pattern as for the large
model. That is, Method 3 yields the smallest estimates as this method does not account for the
cluster sample design and measurement errors. Methods 1 and 2 are very similar to each other
and also provide larger standard errors estimates than those based on (4), which is to be expected

as this equation does not take the complex sample into account.

20



Table 13

Standard Error Estimates for Regression Coefficients %

on a Small Model With Gender + Race/FEthnicity-Only

PCFS 0% NAEP/SRS S.E. Method 1 Method 2 Method 3
Intercept 0.2514 0.0170 0.0341 0.0354 0.0161
Female —0.0882 0.0221 0.0195 0.0221 0.0208
Black - 0.8640 0.0343 0.0514 0.0614 0.0322
Hispanic ~ — 0.6270 0.0328 0.0454 0.0505 0.0308
A./P.IA. 0.0729 0.0593 0.0795 0.0807 0.0552

Note. 0 = .8674. SRS S.E. = simple random sample standard error, PCFS =

principal component factor scores, A./P.I.A. = Asian/Pacific Island American.

Table 14

Direct Estimates for the Subgroup Means

and Standard Errors on Gender-Only Model

Method Group  Means S.E. Scale SE L (95%) U (95%) Width
untrans. trans.

1 Male 0.0750  0.0358  307.4478 1.1052 305.2816 309.6139  4.3323
Female —0.0354 0.0382 304.0419 1.1791 301.7308 306.3530  4.6221

2 Male 0.0750  0.0368  307.4478 1.1340 305.2251 309.6704  4.4452
Female —0.0354 0.0457 304.0419 1.4085 301.2812 306.8027  5.5215

3 Male 0.0750  0.0157  307.4478 0.4855 306.4962 308.3993  1.9030
Female —0.0354 0.0157 304.0419 0.4832 303.0949 304.9890  1.8941

Male 0.0750  0.1803  307.4478 5.5616 296.5470 318.3485 21.8016

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales, S.E.

trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.I.A. = Asian/Pacific Island American.
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Table 15
Direct Estimates for the Subgroup Means
and Standard Errors on Race/Ethnicity Only-Model

Method ~ Group Means S.E. Scale SE L (95%) U (95%) Width
untrans. trans.

1 White 0.2080  0.0318 311.5508 0.9806 309.6287 313.4729 3.8441

Black —0.6600 0.0455  284.7730 1.4036 282.0219 287.5241 5.5022

Hispanic - 0.4220 0.0380  292.1153 1.1736 289.8151 294.4155 4.6003
A./PILA. 0.2770  0.0711 13.6795  2.1937 309.3799 317.9790 8.5991
2 White 0.2080 0.0352  311.5508 1.0874 309.4195 313.6821 4.2626
Black —0.6600 0.0559  284.7730 1.7256 281.3908 288.1552 6.7644
Hispanic —0.4220 0.0422  292.1153 1.3014 289.5645 294.6661 5.1016
A./PILA. 0.2770  0.0705 313.6795 2.1738 309.4189 317.9400 8.5212
3 White 0.2080 0.0124  311.5508 0.3837 310.7987 312.3029 1.5042
Black - 0.6600 0.0297  284.7730 0.9170 282.9757 286.5703 3.5946
Hispanic - 0.4220 0.0282  292.1153 0.8695 290.4112 293.8194 3.4083
A./PILA. 0.2770  0.05639 313.6795 1.6622 310.4214 316.9375 6.5160

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L = lower,

U = upper, A./P.I.A. = Asian/Pacific Island American.

The student group estimates based on these three small models are given in Tables 14, 15,
and 16, respectively. First note that, as is the case for the large model, the direct estimates of
the transformed student group means (column 3 in Tables 14, 15, and 16) are close to NAEP’s
operational results (Table 6). Second, the transformed standard errors estimates (column 4) for
student group means for the three small models under Methods 1 and 2 are somewhat larger than
those from the NAEP jackknife standard errors in Table 6, column 3. One possible explanation
is that the residual variance is relatively large for the three small models. Similar to the larger
model, the approximation of Method 2 inflates the standard error estimates between 10% and

20%.
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Table 16
Direct Estimates for the Subgroup Means
and Standard Errors on Gender + Race/Ethnicity Only-Model

Method  Group Means S.E. Scale SE L (95%) U (95%) Width
untrans. trans.

1 Male 0.0741  0.0282  307.4212 0.8692 305.7175 309.1248 3.4073

Female - 0.0371  0.0261  303.9907 0.8054 302.4121 305.5692 3.1571

White 0.2082  0.0319 311.5566 0.9850 309.6261 313.4871 3.8610

Black —0.6606 0.0456  284.7553 1.4078 281.9959 287.5146 5.5187

Hispanic - 0.4215 0.0378  292.1311 1.1656 289.8465 294.4157 4.5692
A./PIA. 0.2769  0.0705 313.6765 2.1762 309.4111 317.9418 8.5307

2 Male 0.0741  0.0289  307.4212 0.8920 305.6728 309.1696 3.4968
Female -0.0371  0.0321  303.9907 0.9895 302.0513 305.9300 3.8788
White 0.2082  0.0356  311.5566 1.0970 309.4066 313.7066 4.3000
Black - 0.6606 0.0561 284.7553 1.7309 281.3627 288.1479 6.7852

Hispanic —0.4215 0.0421 292.1311 1.2981 289.5868 294.6754 5.0887
A./PILA. 0.2769  0.0699 313.6765 2.1577 309.4474 317.9055 8.4581

3 Male 0.0741  0.0148 307.4212 0.4554 306.5286 308.3137 1.7851
Female - 0.0371  0.0147  303.9907 0.4533 303.1022 304.8791 1.7769
White 0.2082  0.0124 311.5566 0.3833 310.8054 312.3078 1.5023
Black - 0.6606 0.0297 284.7553 0.9158 282.9603 286.5503 3.5900

Hispanic - 0.4215 0.0281 292.1311 0.8684 290.4291 293.8331 3.4039
A./PILA. 0.2769  0.0538 313.6765 1.6602 310.4225 316.9304 6.5079

Note. S.E. untrans. = standard error untransformed to the NAEP reporting scales,
S.E. trans. = standard error transformed to the NAEP reporting scales, L. = lower,

U = upper, A./P.I.A. = Asian/Pacific Island American.

4 Discussion and Conclusions
In this study, several alternative methods have been explored for the computation of standard

error of regression effects in NAEP’s latent regression model. Currently, a simple random sample
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assumption is made at the estimation stage and a post hoc complex sample estimator is used to
appropriately account for the design. Hence, the standard error of intermediate statistics derived
at the modeling stage is possibly underestimated and as such, while using model parameters
directly, are deemed inappropriate from which to draw conclusions about the population of
interest. For example, the regression effect for a variable indicating membership to the class of
females cannot be used directly without further complex sample variance estimation procedures.

Two methods were compared mostly based on Binder’s general methodology. Both large and
small models were compared using both imputation and regression coefficient-based aggregation.
The results indicate that Binder’s method does provide larger standard error estimates, but in a
very limited way for a large model. The impact of using Binder’s method on final imputation
based results is minimal. However, if a small model is estimated, Binder’s method does increase
standard error estimates quite substantially. However, it is not advisable to use the approximation
to the covariance matrix of Method 2, because it inappropriately inflates results by 10% to 20%.
This inflation might even be stronger if less items per student are administered.

The differences between the large and the small models are quite noticeable and require
further discussion. One of the most important differences between the models is the residual
variance, which is high in the small model and moderate in the larger model. Whether the
increased variation is due to the complex sample or to the model is not entirely clear. It is, for
example, possible that the variables in a large model distinguish between schools and therefore in
some sense a fixed effects (i.e., heterogeneous) model is estimated. To provide further insight,
the large model was used to estimate the standard errors for male and female student proficiency
means following Method 1. However, instead of using all components, only the first few were used,
from 2 through 20, leaving out an intercept-only model. Table 17 shows that the standard errors
increase substantially as the number of principal components used decreases. This requires further
careful investigation.

The reason that Binder’s method does not impact the final imputation based results for
student groups means and standard errors is likely due to the fact that a relatively large number
of items was assessed for each student. The result is that the item likelihood under the NAEP
model is quite peaked and—relative to the group model—will be the determining factor for the
calculation of the student posterior mean. Simply put, regardless of the population mean, each

student’s ability is reasonably well-estimated. Obviously, it would be interesting to also study
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Table 17
Standard Errors of Direct Estimates
Based on a Large Model Using Subsets of

Principal Components and the Intercept

No. of PCs Male Female

2 .022 .022
3 .021 .021
4 .021 .020
! .020 .020
6 .016 .016
7 .015 .018
8 .015 .018
9 .015 .018
10 .015 .018
11 .014 .018
12 .014 .018
13 .014 .018
14 .013 .018
15 .013 .018
16 .013 017
17 .013 .017
18 .013 .016
19 .013 .016
20 .013 .016

Note. PCs = principal components.

samples where the number of items per student is much smaller. In that case, a multi-subscale
subject would be of interest as the number of items per student and subscale is relatively sparse.
Finally, it should be noted that while much of the methodology of NAEP was used, the only

results that exactly follow the operational procedures are in Table 6. Also, for Binder’s method
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the replicate strata have been used as cluster variable, which may or may not be appropriate.
Lastly, a simulation study to further examine the merits of this method is advisable given the

surprising results between saturated and small latent regression models.
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Appendix
In the multivariate case, regression effects v will become a long vector including the regression
effects for each subscale, that is, v is a pQ-dim vector (v, - - ,'y;,)’ with each subscale regression
effects v, of () components for ¢t =1,--- ,p. Let Z; be the collection of background variables for

each student in the p-scale assessment, then

:c; 0 0 0
x 0 0

Z; =
0 0 0 ’

v/ pxpQ

The Hessian matrix used in (13) and (28) to compute the standard errors for regression effects

is defined as

2
H(v) = gﬁ, (27)

where L is the total marginal likelihood function for IV students’ response to the test items, which
is expressed as

N

[] Pz~ )"
=1

L = log

N
= sz’log [P(y;|Ziv,2)]
i=1

= Zﬁ;wilog [/ P(y;10)6(0|Z, 2)de} .
(28)

¢(0|Z;v,X) represents the multivariate norm density with mean vector Z;+ and covariance

matrix 3, that is, 8 ~ N (Z;7v,X), and the density function is

1 1

$(0|1Zi7,%) = — e |—5(0-Zy)E7(60 - Z)|. (29)
erisi L2

The partial derivative of ¢(0|Z;~,X) with respect to v is

9¢(6|Ziv, %)

— . >l — 2z,
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Therefore,

N
g;l; _ ZwZ/PyZ’0 9|ZZ77 ) iz—l(e_zz,y)de

i=1
N

= ZwZ/P 0|y,)Z'X71(0 — Z;~)do
=1
N

= ZwZZ’ L6 - Z). (31)

=1

The gradient defined in (15) and (25) is given by

9,(v) = Z;57H0 - Zy)

= ;20— Ziv). (32)

For one subscale case, Z; becomes x; and £~! becomes o2, and the gradient g;(v) for

i=1,---, N becomes

gi(y) = Zl—z) (33)

o2
continue (34) to do the second derivative of L with respect to 7, then the Hessian matrix H (vy)

can be further written as

Zwl [/ (yil60)o (GIZiVaE)Z;E—l(O _ Zﬁ)dO} .

i—1 P(y;)
(34)
Denote the term that includes -« in the integral as f(-), that is,
¢(0‘Z277 E) /v —1 :|
= |——Z,% (0—-Z;v)]|. 35
fo) = | 02 (35)
Then
0f(v) _ 0P(y,) [6(012i7, £)Zi% 71 (0 — Ziy)] — P(y,)0 [¢(6|1 27, 2)Zi%"'(0 — Zi7)] (36)
oy P(y;)?
Let z; be denoted by the term Z;X71(8 — Z;~), then (37) can be simplified as (40).
Zwl [/ v,10) af( 95 ) gl
oy
(37)
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The partial derivative of f(v) with respect to -« is given by

0f(v) _ OP(y)[9(01Ziv, X)zj] — P(y;)0[$(0|1Ziv, X)zi]
oy P(y;)?
_ [ PWil6)$(6|Ziv, X)zidb [$(0]| Ziy, B)z;] — P(y,)0 [6(6| Ziy, X)zi]
P(y;)?
_ Zi[9(6|Zi7,%)z] — 0[9(0|Ziv, T)zi]
P(y;)
2 [0(0|1Ziv,X)z]] — [9(6|Zi7, %) (22} — ZI27' Z;)]
= . (38)
P(y;)
Substitute (41) back to (40), then
N ~ Isv—1
Zi [0(0|1Ziv, X)z]] — [¢(0|1Zi,%)(ziz; — Z;3 Z;)
H(y) = Y wi [ |P(y,6) [ [ a0
im1 P(y;)
N
— Zwi [21-2’1- — /(ziz’i)P(0|yi)d0 -zix'z,|, (39)
i=1
where the expression of Z; is given by
o= [z o - Ze)Piely)ao
= Z;2 Y0~ Zm). (40)
The integration in (42) can be expressed as
[orewae = [ 25760 - 2e)(© - 2y 2= Pl a8
_ /z’ WO —6+6—Z~)0—0+6—Z~) 25 P(6ly,)do
= Zx7'8x7z,+ 2,7, (41)
Finally,
N -~
HA) = S w [~ .- ZIxTISYlZ, - 5,5, Z;z—lzl}
i=1
N r o~
= S w |z '8z, +Znglzz}
i=1 )
N
= —Zwi (a::c)®2 19,57 4 (zz)) @ 27 ]
i=1
N r o~
= - Zwi (i) @ (Z7IE 2 4 2_1)} (42)
i=1 )
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For univariate case,
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